Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

L. C. R. Andrade, ${ }^{\text {a }}$ J. A. Paixão, ${ }^{\text {a }}{ }^{\text {* }}$ M. J. M. de Almeida, ${ }^{\text {a }}$
 E. J. Tavares da Silva ${ }^{\text {b }}$ and
 F. M. Fernandes Roleira ${ }^{\text {b }}$

${ }^{\text {a }}$ CEMDRX, Departamento de Física, Faculdade de Ciências e Tecnologia, Universidade de Coimbra, P-3004-516 Coimbra, Portugal, and
${ }^{\text {b }}$ Centro de Estudos Farmacêuticos, Laboratório de Química Farmacêutica, Faculdade de Farmácia, Universidade de Coimbra, P-3000-295 Coimbra, Portugal

Correspondence e-mail: jap@pollux.fis.uc.pt

Key indicators

Single-crystal X-ray study
$T=292 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$
R factor $=0.032$
$w R$ factor $=0.092$
Data-to-parameter ratio $=8.1$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

17-Oxo-5 β-hydroxyandrostan- 3β-yl acetate

The title compound, $\mathrm{C}_{21} \mathrm{H}_{32} \mathrm{O}_{4}$ crystallizes in a triclinic unit cell, which is very unusual for steroids. The asymmetric unit contains two independent molecules with almost identical geometry, although they are slighly twisted in opposite directions. These molecules form a dimer interconnected via hydrogen bonds. Both molecules have a cis A / B ring junction characteristic of a 5β-configuration, but differ in the orientation of their hydroxyl groups.

Comment

The title compound, (I), is the 3 -acetate form of $3 \beta, 5 \beta$-dihy-droxy-androstan-17-one, a by-product formed during a convergent synthesis recently developed for the preparation of the potent aromatase inhibitor formestane (Tavares da Silva et al. 2002), which is a steroid used clinically as an antitumour agent in the treatment of oestrogen-dependent breast cancer. Following our work on the elucidation of several androstane structures as potential aromatase inhibitors and intermediates of their syntheses, the present X-ray analysis aims to contribute to the elucidation of the observed different reactivities of the precursors of the above-mentioned intermediates (Tavares da Silva et al. 2002).

(I)

The unit cell of (I), which is the asymmetric unit, contains two crystallographically independent molecules, 1 and 2 , with almost identical geometry. An ORTEPII (Johnson, 1976) drawing of both molecules, with the corresponding atomic numbering scheme, is shown in Fig. 1.

The internal degree of structural similarity between the two molecules (Kálmán et al., 1991) can be inferred from the values $I_{D}^{(25)}$ (distances) $=99.6 \%$ and $I_{D}^{(23)}$ (valency angles) $=$ 99.3%. Bond lengths and internal angles are within the expected ranges (Allen et al., 1987), with mean values Csp ${ }^{3}-$ $\mathrm{Csp}{ }^{3}=1.53$ (1) and 1.53 (1) \AA, $\mathrm{Csp}^{3}-\mathrm{Csp}^{2}=1.51$ (1) and 1.51 (2) $\AA, \mathrm{Csp}^{3}-\mathrm{O}=1.45$ (1) and 1.46 (1) \AA, and $\mathrm{Csp}^{2}=\mathrm{O}=$ 1.199 (7) and 1.194 (18) \AA, for molecules 1 and 2, respectively.

Received 10 March 2005
Accepted 21 March 2005
Online 31 March 2005

Figure 1
The two independent molecules of (I), showing the atomic numbering schemes. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii.

The higher standard deviation for this last mean value is due to a slightly shorter than average $\mathrm{C} 20=\mathrm{O} 20$ bond length of 1.178 (4) \AA for molecule 2.

The cis A / B ring junctions characteristic of a 5β-configuration are evidenced by bowing angles between the leastsquares plane of ring A and the C5-C17 plane of 70.10 (8) and $70.09(8)^{\circ}$, for molecules 1 and 2 , respectively. The corresponding distances between terminal O atoms were found to be 10.688 (3) and 10.762 (4) A, respectively, and the values for the improper torsion angles $\mathrm{C} 19-\mathrm{C} 10-\mathrm{C} 13-\mathrm{C} 18$ are -1.3 (2) and $3.0(2)^{\circ}$, respectively, indicating that the two molecules are only slightly twisted, although in opposite directions.

Rings A, B and C have slightly flattened chair conformations [mean values of the torsion angles are 53 (2), 55.0 (10) and $55(2)^{\circ}$, respectively, for molecule 1, and 53.0 (10), 55.1 (5) and $56(2)^{\circ}$, respectively, for molecule 2]. In both molecules, ring D adopts a 14α-envelope conformation distorted towards a $13 \beta, 14 \alpha$-half-chair. Puckering parameters (Cremer \& Pople, 1975), calculated using the atom sequence C13-C17, are $q_{2}=$ 0.413 (3) and 0.423 (3) A and $\varphi_{2}=206.0$ (4) and 208.5 (4) ${ }^{\circ}$, and pseudo-rotation (Altona et al., 1968) and asymmetry parameters (Duax \& Norton, 1975) are $\Delta=-15.2$ (4) and $-20.5(4)^{\circ}, \varphi_{\mathrm{m}}=42.3(2)$ and $43.2(2)^{\circ}, \Delta C_{s}(14)=9.1(2)$ and $7.0(2)^{\circ}$ and $\Delta C_{2}(13,14)=8.9(2)$ and $12.2(3)^{\circ}$ for molecules 1 and 2 , respectively. The 3β-acetoxy group, which does not disturb the usual chair conformation of ring A, is planar [the sums of the valency angles around C20 are 360.0 and 360.0° for molecules 1 and 2, respectively] and oriented axially in both molecules (Luger \& Bulow, 1983), with α angles of 9.48 (14) and $7.53(14)^{\circ}$, respectively, and corresponding angles between the 3β group and ring A of 82.09 (9) and $80.70(12)^{\circ}$, respectively.

The two symmetry-independent molecules differ in the orientation of their hydroxyl groups. In molecule 1, the hydroxyl group establishes an intermolecular hydrogen bond towards the hydroxyl group of the other symmetry-independent molecule, while in molecule 2, the hydroxyl group establishes an intramolecular hydrogen bond with the O atom of the 3-acetoxy group bonded to the steroid nucleus (Fig. 2).

Figure 2
A view of the unit-cell contents of (I), showing the hydrogen-bonding scheme (dashed lines).

Experimental

$3 \beta, 5 \beta$-Dihydroxyandrostan-17-one ($33.5 \mathrm{mg}, \quad 0.11 \mathrm{mmol}$) was dissolved in dry pyridine (1.5 ml) and acetic anhydride (0.3 ml) was added. After 120 h of stirring at room temperature, the solution was diluted with dichloromethane (100 ml) and the organic phase washed with 10% aqueous hydrochloric acid ($3 \times 100 \mathrm{ml}$), 10% sodium hydrogencarbonate $(2 \times 100 \mathrm{ml})$ and water $(2 \times 100 \mathrm{ml})$, dried and evaporated to dryness to give (I) (yield $32.5 \mathrm{mg}, 85 \%$). Spectroscopic analysis: ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{Me}_{4} \mathrm{Si}$, δ, p.p.m.): $0.86(3 \mathrm{H}, s, 18-$ $\mathrm{H} 3), 1.00\left(3 \mathrm{H}, s, 19-\mathrm{H}_{3}\right), 2.09\left(3 \mathrm{H}, s, \mathrm{COCH}_{3}\right), 2.28\left(1 \mathrm{H}, d d, J_{4 \beta, 4 \alpha}=\right.$ $\left.15.5 \mathrm{~Hz}, J_{4 \mathrm{H}, 3 \alpha}=3.6 \mathrm{~Hz}, 4-\mathrm{H}\right), 2.46\left(1 \mathrm{H}, d d, J_{16 \beta, 16 \alpha}=19.0 \mathrm{~Hz}, J_{16 \beta, 15 \beta}=\right.$ $8.5 \mathrm{~Hz}, 16 \beta-\mathrm{H}), 5.25(1 \mathrm{H}, m, 3 \alpha-\mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75.6 \mathrm{MHz}, \mathrm{CDCl}_{3}$, $\mathrm{Me}_{4} \mathrm{Si}$, δ, p.p.m.): 13.7, $\left(\mathrm{CH}_{3}, \mathrm{C} 18\right) 17.0,\left(\mathrm{CH}_{3}, \mathrm{C} 19\right) 20.7,21.5,21.8$, $24.4,25.6,27.4,31.5,34.1,34.2,35.4,35.8,40.6,43.5,47.7,51.5,71.3$, 73.6, 169.4, (CO, C3), 220.9 (C17). Crystals suitable for X-ray experiments were obtained by slow evaporation of a solution of the steroid in methanol and checked by photographic methods prior to data collection.

Crystal data

$\mathrm{C}_{21} \mathrm{H}_{32} \mathrm{O}_{4}$
$M_{r}=348.47$
Triclinic, $P 1$
$a=7.6386$ (9) A \AA
$b=8.259$ (2) \AA
$c=15.7610$ (12) \AA
$\alpha=84.415$ (12) ${ }^{\circ}$
$\beta=89.480(8)^{\circ}$
$\gamma=74.529(19)^{\circ}$
$V=953.6(3) \AA^{3}$

Data collection

Enraf-Nonius MACH3

 diffractometer Profile data from ω scans Absorption correction: ψ scan (North et al., 1968) $T_{\text {min }}=0.869, T_{\text {max }}=0.951$ 7274 measured reflections 3750 independent reflections 3510 reflections with $I>2 \sigma(I)$$$
Z=2
$$

$D_{x}=1.214 \mathrm{Mg} \mathrm{m}^{-3}$
$\mathrm{Cu} K \alpha$ radiation
Cell parameters from 25 reflections
$\theta=22.0-28.7^{\circ}$
$\mu=0.66 \mathrm{~mm}^{-1}$
$T=292$ (2) K
Prism, colourless
$0.20 \times 0.20 \times 0.07 \mathrm{~mm}$

$$
R_{\mathrm{int}}=0.016
$$

$\theta_{\text {max }}=71.8^{\circ}$
$h=-9 \rightarrow 9$
$k=-10 \rightarrow 10$
$l=-19 \rightarrow 19$
3 standard reflections frequency: 180 min intensity decay: 10.7%

organic papers

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.032$

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0556 P)^{2}\right. \\
& \quad+0.0858 P] \\
& \text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }<0.00 \\
& \Delta \rho_{\max }=0.14 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.16 \mathrm{e}^{-3}
\end{aligned}
$$

$S=1.06$
3750 reflections
463 parameters
independent and constrained refinement

Table 1
Hydrogen-bond geometry ($\AA{ }^{\circ}{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
O5-H5 $^{\prime} \cdots$ O5 $^{\prime}$	$0.90(3)$	$2.11(3)$	$2.983(2)$	$165(3)$
O5 $^{\prime}-\mathrm{H5}^{\prime} \cdots$ O3 $^{\prime}$	$0.84(3)$	$2.07(3)$	$2.798(2)$	$144(3)$

For hydroxyl H atoms the coordinates were freely refined, with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{O})$. All other H atoms were refined as riding on their parent atoms, with $\mathrm{C}-\mathrm{H}$ distances in the range $0.96-0.98 \AA$ and with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$, or $1.5 U_{\text {eq }}(\mathrm{C})$ for methyl groups. The absolute configuration was not determined from the X-ray data, as no strong anomalous scatterer was present, but was known from the synthesis route. Friedel pairs were merged before refinement. The rather large linear decay of the intensity with exposure time appears to be related to the crystal and not to the source and it suggests that the compound is radiation sensitive.

Data collection: CAD-4 Software (Enraf-Nonius, 1989); cell refinement: CAD-4 Software; data reduction: HELENA (Spek, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPII (Johnson,1976); software used to prepare material for publication: SHELXL97.

This work was supported by Fundação para a Ciência e Tecnologia.

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. \& Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.

Altona, C., Geise, H. J. \& Romers, C. (1968). Tetrahedron, 24, 13-32.
Cremer, D. \& Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.
Duax, W. L. \& Norton, D. A. (1975). In Atlas of Steroid Structures. New York: Plenum.
Enraf-Nonius (1989). CAD-4 Software. Version 5.0. Enraf-Nonius, Delft, The Netherlands.
Kálmán, A., Argay, G., Scharfenberg-Pfeiffer, D., Höhne, E. \& Ribár, B. (1991). Acta Cryst. B47, 68-77.

Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Luger, P. \& Bulow, R. (1983). J. Appl. Cryst. 16, 431-432.
North, A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, 351359.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Spek, A. L. (1997) HELENA. University of Utrecht, The Netherlands.
Tavares da Silva, E. J., Fernandes Roleira, F. M., Sá e Melo, M. L., Campos Neves, A. S., Paixão, J. A., de Almeida, M. J. M., Silva, M. R. \& Andrade, L. C. R. (2002). Steroids, 67, 311-319.

